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Stochastic instability of quasi-isolated systems
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The stability of solutions to evolution equations with respect to small stochastic perturbations is considered.
The stability of a stochastic dynamical system is characterized by the local stability index. The limit of this
index with respect to infinite time describes the asymptotic stability of a stochastic dynamical system. Another
limit of the stability index is given by the vanishing intensity of stochastic perturbations. A dynamical system
is stochastically unstable when these two limits do not commute with each other. Several examples illustrate
the thesis that there always exist such stochastic perturbations that render a given dynamical system stochas-
tically unstable. The stochastic instability of quasi-isolated systems is responsible for the irreversibility of time
arrow.
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[. INTRODUCTION ject to, probably, weak but, generally, uncontrollable random
influence from the environment. Even if this influence is
Evolutional processes of nature are described by differenquite _vv_eak, Its very existence IS of principal importance, for
tial equations that, in general, are equations in partial deriva®Xplaining the irreversibility of time arrow.
tives. A set of such partial differential equations constitutes 't iS worth noting that the irreversible behavior of macro-
an infinite-dimensionatiynamical systemunder aphysical scopic systems is often attributed to internal chaotic nature of

systenone implies an ensemble of objects whose behavior ignicroscopic dynamicgsee discussion in Refl5]). How-

of interest. The evolution of a given physical system is char8Ver not all physical systems display chaotic behavior. Many

: ; .—.of them are perfectly governed by rather simple deterministic
acterized by the related dynamical system. Among physmaﬁéws, with no signs of chaos. Nevertheless, the time arrow is

systems, one distinguishésolated system&s opposed to Il defined f i includi ol d
open systemd he evolution of the isolated physical systemsWe elined for any system, Inciuding very simple and non-
chaotic ones. Furthermore, the recent developments in dy-

cauations not_containing random variables. Wi open Namical heory, as reviewed by Zaslav4ig], show that the
physical systems, generally, deal witochastic equations chao_tlc d_y namics in _regl systems does not prowdg finite re-
where random terms represent the interaction with the Sw]gxanon time to equilibrium or fast decay of quctuquns, and
roundings. that_chaotlc systems are not 'co.mpletely random in the sense
Prlglnally postulated for statistical systems. Therefore the

Solutions to differential equations can be either stable o f d . t thouah K
unstable. There are methods for analyzing the stability o resence of a random environment, tnough very weak, Seems
o be crucially important for interpreting fundamental no-

solutions for a given dynamical system, either deterministi ? in the behavior of real phvsical A
[1-3] or stochastid4]. Here we address another problem, Ions [n the benhavior of real physical systems. |
From another side, there is a common belief, based on

that of stability of a deterministic dynamical system with ) ; . )
d:gractlcal experience, that physical systems can, with a very

respect to small stochastic perturbations. This problem is n g be isolated and be d ibed by determi
only interesting by itself but it is of fundamental importance good accuracy, be Isolated and can be described by determin-
stic equations, while the random influence of surroundings

with regard to the question: how adequately the notion of . ;
isolated systems represents the physical reality? may be neglected. Thus, there exists an apparent contradic-

As is evident, the notion of an isolated system is an ab:[ion betwgen t.he pringipal necessity of allowing for randqm
straction. In fact, no real system can be completely isolate(ﬁ)erturbatlons influencing any real system and the practical

from its surroundings. This point has been repeatedly emphg)_ossibility of neglecting such perturbations, treating a system

; - - o ; ; as isolated.
{ting macroscopic systems from their environment is con-_ThiS coniradicion is esoived in the present paper by put-
sidered as being intimately related with the irreversibility ofing the prob!em on a firm math.emau.cal f°°“F‘9- The con-
time [10,11]. Moreover, it has been stressg®,13 that the cept of quasi-isolated systems is deflne_d. It is shown thqt
concept of an isolated system is logically seIf-contradictorysuc.h systems, generallyz are unstaple with respect to ||_1f|n|-
by its own. This is because to realize the isolation, one has t S'”"?”Y small stochasfuc perturbations. At the same time,
employ technical devices acting on the system; and to ensu gra f|p|te temporal period, these systems can be treated as
that the latter is kept isolated, one must apply measurin@‘ppmx'mately isolated.
instruments perturbing the system. The preparation and reg-
istration processes disturb the system dynarfiigs. In this
way, there exists an accepted understanding that any consid- Let a continuous variablee D denote a set of spatial
ered physical system is never absolutely isolated but is sulzoordinates pertaining to a domainand lett R, denote

Il. STABILITY OF STOCHASTIC SYSTEMS
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time. Suppose a stochastic fiefdt) is defined. In general, from where it is evident whyo(t) is called the stability
the latter is a set of stochastic functiogqx,t), with i index, or stability exponent. From this definition, one can
=1,2,... .Throughout the paper, we shall use the matriximmediately conclude that the admissible local properties of
notation [17] making it possible to express the following motion are classified as

equations in a compact form. Thus, thchastic field:(t)

=[&(x,t)] is considered as a column with respect to both o(t)<0  (locally stablg,

i=1,2,..., aswell asxeD. The dynamical state {,t)
=[yi(x,&t)] is also a column with respect foandx, as is
the velocity fieldv (y,&,t) =[v;(x,y,&,t)]. The set of evolu-
tion equations, defining a dynamical system, in the matrix

notation reads The asymptotic Lyapunov stability corresponds to the termi-

o(t)=0 (locally neutra, (7)

o(t)>0 (locally unstable.

d nology
qr/(Ev=vy.80. D limo(t)=—o (Lyapunov stablg
t—oo
This is complimented by an initial condition
limo(t)>—o~ (Lyapunov unstable 8
y(£,0=y(0), (2 o
implying the set And in the language of the Lagrange stability of motion, one
has

yi(xigao):yi(xvo) (I :112! v )

of the related initial conditions. The averaging over the sto-
chastic field¢(t) is denoted by the double angular brackets

supr(t)<ee  (Lagrange stable
t

as supr(t)=c (Lagrange unstabje 9
t
y(m=«y(&0)), @ he limit
which assumes the family of the functions 1
A=Ilim—-o(t 10
Vi) = (i EDD, @ myo® (
with i=1,2,.... corresponds to the largest Lyapunov exponent. One tells that

In the stochastic equatiofl), the velocity fieldv(y,&,t)  the motion is asymptotically stable k<0, neutral when
may, in general, contain differential as well as integral op-=0, and unstable it >0.
erations. To solve Eq1) means to find the averaged solution  The usage of a local characteristic of motion, such as the
(3). Stochastic differential equations, as is knof®], can  |ocal stability index(5), provides us an essentially richer
be defined either in the sense of Ito or in the sense of Stl’a,nformation on tempora| dynamics than the |argest Lyapunov
tonovich. In what follows, the latter definition will be em- exponent(10) defined for the limitt— . First of all, this is
ployed, which permits Simpler calculations and is better MOpecause many dynamica| systems possess a rather Comp"_
tivated physically [19]. It is also possible to use the cated structure of their phase space resembling a topological
stochastic expansion techniq(i20,21], presenting the sto- zoo, consisting of domains of chaotic dynamics as well as of
chastic field as an expansion over smooth functions of spatigkgions of regular motion, containing manifolds of wander-
and temporal variables with random coefficients. Thising trajectories as well as trapping islands. As a result of this,
method enables the usage of the standard differential ange fine local properties of orbits play a leading role, while

integration analysis. The final results of the expansion techsuch a fairly rough characteristic as the limiting Lyapunov
nique coincide with the corresponding expressions obtainegxponent is less importaft6,22.

by means of the Stratonovich method. Moreover, the asymptotic divergence of trajectories of
The local stability of a dynamical system can be characstochastic dynamical systems is not compulsorily exponen-
terized by theocal stability index tial [4], because of which making use of only the limiting
Lyapunov exponenfl0) may result in the loss of informa-
a(t)=In supw, (5) tion. For example, the divergence of trajectories can be of
ay(0)| 9Y(0)] power law
which describes the maximal deviation of the averaged tra- | 8y(t)|~]|8y(0)|tA.

jectory at timet after an infinitesimal variation of the initial
conditions. Such a deviation, according to Ef), corre-  Such power laws are typical for weakly disordered systems
sponds to the law [23] exhibiting mid-range ordefr24]. In that case, the local
stability index(5) behaves ag(t)~ 3 Int, which can be ei-
|8y (t)|~|6y(0)|e”®, (6)  ther positive or negative depending on the sigiBoRespec-
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tively, the motion is either stable or unstable. While, accord- Ill. STOCHASTIC MULTIPLIER MATRIX

Ing 'to '.[he Lyapunov exponentl0), which is 7‘.:0’ thFT‘ What we are actually given is the stochastic equation
motion is neutral. Another example has to do with the dlver-definin the stochastic dynamic Stytéz,t), whose variation
gence of trajectories by the stretched exponential law 9 y e

|8y (t)|~|8y(0)|exp xth), SY(&,1)=M(£,1)8y(0) (16)

with 0< <1, which is also quite ubiquitous in disordered over the initial conditions involves thstochastic multiplier
systems. Then the local stability inde®) is o(t)~«tf,  Matrix M(£,1)=[M;(x,x",£,t)] with the elements

which again can be either positive or negative depending on

the sign ofk, hence, the motion is either stable or unstable. M (XX, & t)EM (17)
And the limit (10) is again zero, classifying the motion as P sy 0)
neutral.

Instead of the asymptotic Lyapunov exponéh®), one  For the latter, one has the initial condition

could define the local Lyapunov expong@b6,26 as , ,
Mij(X,X ,§,0)=5ij5(x—x ) (18)

A= %g(t), The multiplier njatrix(17) is connected with thetochastic
Jacobian matrix §&,t) =[J;;(x,x",§,t) ] with the elements

However, for what follows, the usage of the local stability

index (5) is more convenient. 3 (XX, & t)E5vi(X'y’§'t) _ (19
One more advantage of employing a local characteristic DT sy ()6

of stability is that the limit(10) for many complex systems is

technically unachievable. Then the local ind&xis the sole ~ The variational differentiation of E¢(1) gives the equation

available quantity that can be actually calculated. Such a

situation is typical for complicated nonlinear equations that im(g H)=3(&HN(£,1) (20)

can be treated only numericallg7], for the analysis of vari- dt >’ ' ’

ous time series that are always fin[t28], and for the dy- o . . N )

namical representation of perturbation theory, where it idor the multiplier matrix(17). The initial condition for this

practically feasible to calculate only a finite number of terms€duation is Eq(18). _ _

[29-32. _Since the evoll_mon equatiqi) represents a set of partial
The local stability exponer(6) can be expressed through differential equations, one has to define as well boundary

the multiplier matrixi ()=[M;;(x.x" 1) ] with the elements conditions. The latter can be written in the general form

b(y,&,t)=0 (xedD), (21)
M , _ &/i(xyt) 11
ij (XX, 1) = Sy (x'.0) 1D \wheredD is the boundary manifold of the domain and
e b(y,&,t)=[bi(x,y,&,1)] is a boundary vector. Defining the
From this definition, it follows that boundary matrixAﬁg,t)z[Bij(x,x’,g,t)] with the elements
Mij (X,X",0)= &;; 8(x—x"), (12 Sbi(x,y, &t
1] 1] Bij(X,X'.g,t)EM (22)
where §;; is the Kroneker delta and(x) is the Dirac delta (X", &1)
gjsncnon. Writing the variation of the averaged dynamic Stateand accomplishing the variation of E@1), we get the
boundary condition
Sy(t)=M(t)8y(0), (13 B(&OM(E1)=0 (xedD) (23
we see that for the multiplier matrix.
|I\7I(t)by(0)| As an illustration, we may offer the often met form of the
SUDW =M, (14)  boundary conditions
oy(0)

Jd
with the spectral norm dfl (t) being assumed. Therefore the 1+ g&) Vi &ED=H(1) - (xedb),

local stability exponentb) is
where { is a parameter anfl(t) is a given function. The
cr(t)=ln|||\7|(t)||. (15)  Vvariation of this condition results in the equation

Thus, to analyze the stability of motion, we need to know the
multiplier matrix (11).

1+§a—i)Mij(x,x’,§,t)=O (xedD),
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demonstrating a particular case of the boundary condition

(23).

PHYSICAL REVIEW E 65 056118

For the multiplier and Jacobian matrices, one may employ

different representations. To this end, let a{sgf(t)} of the
columns ¢, (t) =[ ¢ni(X,t)] be given, forming an orthonor-
malized complete basis,

(D) @n(t) = Smn, 2 en(Den (=1,

WhereA1=[5ij 8(x—x")] is the unity matrix andh is a label-
ing multi-index. To pass from the representation to rep-
resentation, we define

Mmn(&)=em(DM (&) @n(t),

I ED=m(DI(ED) @n(1). (24)

Recall that the matrix notatidri7] is used here, according to
which, for instance, the action of the multiplier matrix on
¢on(t) is the column

I\A/I(g,t)cpn(t):[; fMij(x,x',g,t)qonj(x',t)dx' .

Equation(20) for the multiplier matrix in the new represen-
tation reads

d
FiMm(ED =2 [Jmk@,t)mkn(g,t)
k

den(t)

+Mmd D) @y (1)

dt
deyk(t)
—em(O =g Ma(€D], (29
where the relation
depm(t) L den(t)

following from the normalization condition, is used. And
from Eq. (18), we have the initial condition

M mn(&,0)= 6 (26)
for Eq. (25). The multiplier matrix enjoys several useful
properties.

Proposition 1 If the dynamical state/(&,t) can be pre-
sented as an expansion

y(f,t>=§ (€D @n() + (1), (27)

over a basig¢,(t)} andf(t)=[f;(x,t)] is a column of func-
tions not depending on the initial stagé0), then the multi-
plier matrix has the form

M(ﬁ,t>=§ (€D en(Hen (0), (28)
in which
Scq(€t
palE0= 2 29

Proof. The variation of the expansid27) gives

6yi(xié1t): 6Cn(§1t) 5Cn(§10)
dyi(x',00 T (€0 sy;(x',0)

(Pni(xvt)'

At the same time, from Eg27) we have

Cr(&,1)=n (Y(E,) — @r (D)F(1).

From the latter equation, we get

5Cy(£0)

* !
sy, o0
Using this and invoking the definitiofil7), we obtain the
form (28) with notation(29).

Remarks Although the basiq ¢,(t)} is assumed to be
orthonormalized, but the vectogs,(t1) ande,(t,) at differ-
ent timest,;#t, are not necessarily orthogonal, so that, in
general,

(Pr;(o)(Pn(t) # Omn-

Neither ¢,(t) nor ¢,(0) are necessarily the eigenvectors of
the multiplier matrix, for which we have

M (&) @n(0)=pn(&,1) n(t).

Only when ¢, (t) = ¢, does not depend on time, then, is

an eigenvector of\7l(§,t) and u,(€,1) is its eigenvalue.
Proposition 2 Suppose the multiplier matrid (&,t) pos-

sesses eigenvectogs,(t) forming a complete orthonormal-

ized basis. Then the related eigenvalues, given by the eigen-
problem

M (&8 @n(t)= (€, @n(b), (30)
can be presented as
t
/-Ln(grt):ex% fo‘]nn(gat,)dt,]- (32)

Proof. With ¢,(t) being the eigenvectors of the multiplier
matrix, the elements of the latter, defined in E24), are
Mmn(€,1) = Smnin(€,1). (32

Substituting this into Eq(25) yields
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d
5mna/~‘¢n(§rt):‘]mn(gut)ﬂn(gvt)+[Mm(fut)

den(t)
—ua(ED]en()—g— (33
Whenm=n, the latter equation gives
d
ﬁ#n(gvt):Jnn(g’t):un(gvt): (34
while for m#n, it results in
. Hm(€,t) + dep(t)
Jmn(fat)_ 1- ,U«n(f,t) Pm dt
Solving Eq.(34), with the initial condition
Mn(gao):]-a (35)

we come to the eigenvalu8l).
Remarks From the eigenproblernt80), one gets the rep-
resentation

I\7I(§,t):§n) pnl(ED)@n(Der (1) (36)

for the multiplier matrix. The eigenvectors of the latter are

not necessarily the eigenvectors of the Jacobian météx
Hence the forml,,,(¢,t), defined in Eq(24), is, in general,
nondiagonal.

Proposition 3 Assume that a complete orthonormalized

basis{¢,(t)} is such that

den(t)

+ —

(m#n). (37

Then ¢,(t) are the eigenvectors of the multiplier matrix
M(&,t) if and only if they are also the eigenvectors of the

Jacobian matrixi(&,t).
Proof. Let condition(37) hold. Then Eq(25) becomes

d
GEMmn(£0 =2 Ind EDM(£D)+ Mmg(£0

den(t) dem(t)
(Pdt —on(t) (’Ddt

X| @n (1) .(39)

If o, (t) are the eigenvectors & (£,t), that is, the forn(32)
takes place, then E@38) reduces to

d
5mnal’vn(§1t) =Jmn(& D un(é 1),

from where it is clear that
Jmn(gvt): 5mn~]nn(§at)- (39)

Hence,,(t) are the eigenvectors df(¢,t).

PHYSICAL REVIEW B5 056118

Conversely, ife,(t) are the eigenvectors o}(g,t), o)
that Eq.(39) holds true, then solving Eq38) yields

dey(t’)

t
an(f,t)=an(§,O)exp{ J‘O{Jmm(gyt,)'i'@:(t,) dt’

d‘Pm(t/)
N Y dr .
(Pm(t ) dt’ 1 t }

In view of the initial condition(26), this results in

an(gat):b‘mnex% jt\]nn(fat,)dt,]v (40)
0

which tells us thatp,(t) are the eigenvectors dfﬂ(g,t).

RemarksAs follows from Eq.(40), the eigenvalues of the
multiplier matrix are given by expressidB1). A simple ex-
ample, when conditio(37) is valid, is the case of a station-
ary basis{ ¢}, with ¢,(t) = ¢, not depending on time.

Comparing Eqs(3), (13), and(16), we see that

M) =(M(&D)). (4D

Therefore, ifM(,t) possesses eigenvectars(t), then the
matrix (41) satisfies the eigenproblem

M () @n(t) = () @n(t) (42
with the same eigenvectors and the eigenvalues
() = {(mn(€,1))), (43
which have the property
wn(0)=1. (44)
With the spectral norm
M ()] =supy| (b1,
the local stability exponentl5) becomes
o(t)=Insup|{(un(&,ON]. (45)

In this way, the problem of analyzing the stability of a sto-
chastic dynamical system is connected with finding the ei-
genvalues of the stochastic multiplier matrix.

IV. CONCEPT OF QUASI-ISOLATED SYSTEMS

As is discussed in the Introduction, no real physical sys-
tem can be completely isolated from its surrounding. The
latter can be modeled by stochastic perturbations of the sys-
tem dynamics. To stress that the amplitude of the stochastic
perturbation is small, it is convenient to include explicitly a
small factore in front of the stochastic field(t). So, instead
of Eq. (1), we shall write

dy

Gi=vOagt). (49
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The factora=a;+ia, is assumed to be complex, with its Note that the inclusion of stochastic fields in the evolution

real parta;=Rea and imaginary partv,=Im «. The com-  equations can be realized in different ways. Hence, in prin-
plex value of the factorr makes it possible to simulate ran- ciple, one could consider the stochastic stability with respect
dom fluctuations of different physical quantities, such as ento each of the particular ways. A quasi-isolated system may
ergy and attenuation or density and phasex#0, there are  turn out to be stochastically stable with respect to some of
no stochastic perturbations, and one returns to a deterministjgerturbations but unstable with respect to others. However,
dynamical system. When stochastic fields are switched on bthe kind of action of random environment on a quasi-isolated
means ofa#0, we have a stochastic dynamical system,system is, by assumption, unpredictable. Therefore, it is not
whose local stability is characterized by the stability expo-sufficient to limit ourselves by only some ways of including

nent(45) that takes the form stochastic perturbations, which would result in the analysis
of partial stochastic stability. But, in order to make a conclu-
a(a,t)=Insup | un(a& ), (47 sion on thegeneral stochastic stability of a quasi-isolated

system, one must analyze all qualitatively different admis-

where the dependence on the switching faetas explicitly  sible ways of including stochastic terms in the evolution
shown. equations. Fortunately, there are just two main qualitatively

The stability exponent47) describes the stability of a different types of random noise, multiplicative and additive.
stochastic dynamical system with respect to the infinitesimal In the following sections, the preceding ideas will be il-
variation of initial conditions. For correctly defining the no- lustrated by concrete examples. Since the perturbing influ-
tion of a quasi-isolated system, it is also necessary to corence of the surroundings may be caused by many indepen-
sider the stability with respect to infinitesimal stochastic per-dent random sources, their action, according to the central
turbations. This implies thagfter analyzing the stability of limit theorem, can be modeled by the Gaussian white noise
the stochastic system by means of the stability exponeritl8]. For the convenience of the reader, the basic properties
(47), we should setx—0. Sincea is complex valued, the of this noise, which will be repeatedly used throughout the
limit «— 0 means that both its real and imaginary parts tendaper, are listed in short in the Appendix.
to zero: a;—0 and a,—0. Among all admissible ways of
tending to zero fore—0, it is necessary to choose that one V. IMPORTANCE OF MULTIPLICATIVE NOISE
providing the maximal value for the expond#®), in agree-

ment with its definition as characterizing thergestdevia- ~ On€ may notice that additive noise cannot lead to stochas-
tion of the trajectory. The so defined limit—0 will be tic instability. Really, let the velocity field in Ecﬁ_l) beasqm
denoted as v(y,&,t)=v(y,t) +v,(&,1) of two terms, the first of which
does not depend on the stochastic fig(d), while the sec-
lim o(a,t)=sup, lim o(a,t). (48  ond does not include the dynamic stgterhen the Jacobian
a—0 la|—0 matrix (19) is defined only through the variation of, and

does not depend ar,. Therefore the solution of E§20) for
In the stability analysis with the help of the stability expo- the multiplier matrix also is independent from,, which
nent (47), an important part is the consideration of the means thab, does not influence the properties of the mul-
asymptotic stability, whemn— . This limit may, in general, tiplier matrix, hence, does not change the type of stability.
not commute with the limitw— 0. Therefore, an important But the multiplicative noise can strongly influence the sta-
step is to study the commutativity of these limits, characterbility property. To illustrate this, let us consider the evolution

ized by the commutator equation(46) with the velocity field
[lim,lim]= lim lim — lim lim . v(y, @& )=f(t)+ad(t)y(aé,t),
a—0 t—w a—0t—o t—oa—0

wheref(t) is a given function and(t) is a Gaussian white-
The content of this section can be summarized by formulathoise variable with the properties described in the Appendix.

ing the following definitions. Equation(46),

Definition 1 A physical system is callequasi-isolatedf
its evolution is described by the stochastic dynamical system d_y =f(t)+ ak(t)y (51)
(46) with infinitesimally small stochastic perturbations. dt ’

Definition 2 A quasi-isolated system istochastically . ) . . .
stablewhen determines the evolution of a one-dimensional dynamical

system. In this case, the Jacobian matfi®) reduces to the
[lim,lim]o(a,t)=0. (49  function

a—0 t—x

J(aé,t)=al(t).
Definition 3 A quasi-isolated system istochastically un- ) L .
stableif q y y According to Eq.(31), this gives the multiplier

[lim, limJo(a,t)#0. (50) ﬂ(ag,t):exﬁfaftg(tf)dt'}_ (52
0

a—0 t—»
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The same fornt52) could be obtained from the direct varia- o(at)=(a2— ad), (58
tion of the solution
where the properties of the white noise from the Appendix
_ f R are used.
ylast y(O)exp[ “ og(t jdt ] If the influence of the random noise is removed before the
temporal limit, that is@¢— 0, then, for any choice ok, and

t t
+f f(t')exp{ af g(t/r)dt//}dt/. oy, We have
0 t!
lim limo(a,t)=0, (59
For the stability index47), we find toxa—0
o(a,t)=(a?—ad)t, (53)  Which corresponds to the neutral motion. However, the situ-

ation is different if the limitt— o is taken first. Then, maxi-
wherea;=Rea anda,=Im a. Keeping in mind the defini- mizing the facton(58), in agreement with definitio(48), as
tion (48), according to which the stability index is to be is explained in the preceding section, we get the fo54).
maximized with respect ta; anda,, under the given modu- As a resullt,
lus |a|?=ai+ a3, we see that syga’—a3) equals|a|?

= o?. Therefore the index53) can be written as i'LnOtILTOU(“'t):OO' (60)
— 2
o(at)=|al*. (54 The noncommutativity of the limité59) and(60) shows that
From here it follows that the limits the oscillatory motion is stochastically unstable.
This means that for a finite time, such that?yt<1, the
lim lim o(a,t)=0, limlimo(a,t)= (55) system with an oscillatory evolution can approximately be
t—oa—0 a—0t—o treated as isolated. But there always exists such a weak ran-

) S dom noise that makes the system unstable for sufficiently
do not commute with each other. This implies that the quasifong times.

isolated system, whose evolution is given by E§1), is
stochastically unstable. VII. STOCHASTIC DIFFUSION EQUATION
VI. OSCILLATOR IN STOCHASTIC BACKGROUND Consider the diffusion equation

Many physical processes are presented by oscillatory mo- ay Py
tion. It is, therefore, illustrative to consider a quasi-isolated —=[D+aé(t)]—, (61)
system described by a harmonic oscillator subject to the ac- at IX

tion of a weak external noise. Let the evolution equatié®) ) o ) )
have the form in which the diffusion constarid >0 is subject to weak ran-

dom fluctuations. For any given finite interval, the spatial
dy . variablex can always be scaled so that to be defined on the
at eyt ag(ty, (56)  unity interval. Thus, we assume that [0,1]. Equation(61)
is complimented by the initial condition

where the oscillator frequenay is real. Here the real part of

a corresponds to the noisy attenuation-generation process y(x,a£,00=y(x,0), (62

and the imaginary part af described the noise of frequency. . . . »

For this one-dimensional case, the Jacobian méatSxis with a given functiony(x,0), and by the boundary conditions

the function

y(0.aé,t)=bo, y(laft)=by, (63)
J(aét)=iw+ t).
(abt)=lota &) whereb, andb, are constant.
In view of Eq.(31), the multiplier is For Eq.(61), the Jacobian matrixl9) is
. t 52
M(aé,t)=exrﬂ|’th+aJO§(t’)dt’]- (57 J(x,x’,af)=[D+a§(t)]ﬁﬁ(x—x’). (64)
X
The same expressiah?) also follows from the variation of The poundary conditiongs3) lead, according to Eqg22)
the solution and(23), to the boundary conditions
t ’ _ ’ _
y(af,t)=y(0)exp[iwt+af §(t’)dt’]. M(OX',a,t)=M(1x',a,t)=0 (65
0
for the multiplier matrix.
The stability index(47) is Solving the eigenproblem
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1 , L which means that in the absence of any stochastic perturba-
fo JX, X", ad) pp(X")dX = Jn(@f) en(X) (66)  tions the motion would be stable. However, if infinitesimally
small stochastic perturbations are present, then

for the Jacobian matrix64), with the boundary conditions

¢n(0)=¢n(1)=0, (67)

we find the eigenvalues

lim limo(a,t)=00, (75)

a—0 t—ow

and the motion is stochastically unstable. This case serves as
a good example of how even very weak perturbations can
render the system to become unstable, even if without these

— 2
In(aé)=—[D+ad(v)]k, (68) perturbations it was perfectly stable.

and the eigenfunctions .
VIIl. STOCHASTIC SCHRO DINGER EQUATION

@n(X) = V2sinkyx, (69 Consider the nonstationary Schinger equation

where a
Zr LM +af(rHem]d, (76)
k.=mn (n=1.2,...N—wx). (70

: _ . . in which we seth=1, =(r,aé,t) is a wave function,
The eigenvectors,=[¢n(x)], being the columns with the H(r) is a Hamiltonianw is real,f(r,t) is a given real func-

elements(69), are stationary. Hence, they satisfy condition . . X . . L
(37). Then, by Theorem 3, the multiplier matrix possesses}!onaindtfh(t) .'Shtthﬁ wgltgdnmsfel.zvggh ttrr:e \\]/elocgyy f|eldtqe-
the same eigenvectots,, with the eigenvalue§31), where ined by the right-hand side of E(76), the Jacobian matrix

Jan=J,. Taking account of Eq(68) yields (19) becomes

. J(r,r' e t)y=[—iH(r)+af(r,t)ét)]18(r—r"). (77
Mn(a§,t)=exp|—Dk§t—akﬁf g(t’)dt’}. (72 )
0 The eigenproblem for the matrix(aé,t), whose elements

are given by Eq(77), reads
Note that the solution to Eq61) reads g y Eal7?)

. I, t) Yn=In(@é, O . (78)
Y(X,af,t)zzl Cntn(ag, ) on(X) +f(x), Keeping in mind thatx is small, the eigenproblerfy8) can
be solved by means of perturbation theory. In the zero ap-
where proximation, the eigenvectap,=[ ,(r)] is a column with

respect to the spatial variable with #,(r) given by the
stationary Schrdinger equation

H(r)n(r)=Epgn(r),

eso that the zero-order eigenvalue of the Jacobian matrix is

1
Cn= fo[y(x.0>—f<x>]qon<x>dx, f(X) =bo+(by—bo)x.

The form of this solution is that of the expansi¢27) in
Theorem 1, because of which the multiplier matrix could b

found by means of this theorem. JO(wg t)=—iE,,.
Averaging Eq.(71) over the stochastic fieltsee Appen- "
dix), we get The first-order approximation for the eigenvalue of the Jaco-
) _— bian matrix is given by
[((un(@é,1)))|=exp(—DKat+ akpyt), (72
Jo(aé,t)= I a 't , 79
where« is real. Hence, the stability indg»7) becomes (@8, = Ja& iy (79
5 . which yields
o(a,t)=sup,(—DKat+ a?kiyt). (73
o _ _ o In(@é,t)=—IEp+afp (1)), (80)
Taking into consideration Eq70), this gives
where
-D7’t  (a=0),
1t =
@V 2aNyit (ar0), fn(t>zf YO g (r)dr.
with N.Hoo' Note that iff(r,t)=f(t) does not depend on the spatial vari-
In this way, we have ) -~ . )
abler, then the form(80) with f,(t)=f(t) is an exact eigen-
lim lim o(a,t)=—oo, (74)  value of the matri>€](a§,t). The multi-indexn, labeling the
t—o a—0 eigenvalues, can be discrete as well as continuous.
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For the stationary eigenvectogs, of the Jacobian matrix, a?
the multiplier matrix, by Theorem 3, possesses the same {pn(@é,))=pn(O)eXP - Kn(t) [, (87)
eigenvectors and its eigenvalues are

. where the factor
,un(ag,t)zexp(—iEnt+afofn(t’)§(t’)dt’}. (81) ‘
,un(O,t)zexp[f Jnn(O,t’)dt’]
0
From here, the stability indefd7) is

is the multiplier of an isolated system, without any random

. )
o(a,t):azyf 2.1t 82) perturbations, and
0

t .
ka(®=3 [ desdre | A AL

The functionf(r,t) in Eq. (76) can always be chosen so that i

to satisfy the inequality X (& (X0 ) (X))t

1 [t
Iim—f f2(t")dt’>0. (83)  is caused by stochastic perturbations. Then the stability index
t—=tJo (47) is
Switching off stochastic fields results in the neutral motion, t o o?
for which o(a,t)=sup,R OJnn(OI )t + —-xn()|, (88)
"”;‘C ””2)"(0""):0- @84 Wwherea is real.
(e When a— 0, the stability index
But for infinitesimally weak stochastic perturbations, the mo- t
tion becomes unstable, with o(0t)=sup, Ref Jan(0t")dt’ (89
0
lim limo(a,t)=0, (85 . i . .
a—0t—o is defined by the properties of the system without perturba-
tions. The limitse— 0 andt—o do not commute if
where condition(83) is taken into account. In this way, the
system described by the Scbinger equation is stochasti- lim |22 Rexq(t) " (90)
cally unstable, although for some temporal interval, when oo o(0}t)

o(a,t)<1, it can be treated as almost isolated.
Then the quasi-isolated system is stochastically unstable.
IX. SKETCH OF GENERAL SITUATION This condition is accomplished for the concrete cases con-
sidered above. It is, of course, impossible to prove that any
In the general case, the stochastic fig(t) =[ & (x,t)] is  given quasi-isolated system is, with probability one, stochas-
a column composed of the elemergigx,t) depending on tically unstable. However, the above consideration suggests,
space as well as on time. This field has to enter the evolutioith a high level of probability, that there always exists such
equations as a multiplicative noise. To consider a quasia noise that renders stochastically unstable any particular
isolated system, the stochastic term is included with the facsystem. This thesis is certainly correct for those systems that,
tor @, which is assumed to be infinitesimally small. F@r in the absence of noise, display neutral motion. Then
<1, the Jacobian matril9) can be calculated by perturba- ReJ,,(0,t)=0, hencec(0t)=0, and condition(90) is ob-

tion theory, which yields an expression of the form viously valid. As is shown in Sec. VII, conditiof®0) can be
. . . held true even for systems that are stable when there is no
J(aé,t)=3(0t)+ad' (&1). noise. Let us also emphasize that if, instead of white noise,

we would consider infrared noise, then conditi®® would
In the representation of a basfg,(t)} of vectors ¢,(t) necessarily hold. Really, for a deterministic system at large
=[oni(X,1)], this reads time, one usually hasr(0t)~t, while for infrared noise
kq(t)~t2. This makes conditioi90) evidently valid.
Finally, it is important to note that for stochastic dynami-
cal systems the divergence of averaged trajectories is not
(86)  necessarily exponential but may be of algebraic fgd
which implies that the norm of the averaged stochastic mul-
If ¢,(t) are the eigenvectors of the multiplier matrix tiplier matrix has the power-law behavior
M(aé,t), then its eigenvalues, by Theorem 2, are given by

B
Eq. (31). Averaging these eigenvalues over stochastic fields, CIETNIE aA(£> (B>0),
implied to be Gaussian, gives te

Imn( @€, 1) =IO + > f Amn(X.D & (X, D) dx.
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whereA is a constant ant}, is thechaotization timalefining  forever. Sooner or later, a quasi-isolated system looses its
the crossover between stable and chaotic motion. tFor stability. There are no eternally stable systems in nature.
<t., the motion is stable, while far>t., it becomes cha- (i) Absence of absolute equilibriurm the theory of dy-
otic. The arising instability corresponds weak chaosince  namical systems, solutions are termed equilibrium if they are
the effective trajectory divergence is only algebraic but noteither constant in time or periodic or quasiperiodic. How-
exponential. In this case, the local stability indéx) is ever, for a quasi-isolated system, none of these solutions can
be absolutely stable for an infinitely long time. On a finite

t\# temporal interval, a solution can correspond to a stable equi-
o(a,t)=In aA(E) : librium, but with increasing time, some kind of nonequilib-
rium behavior will certainly appear. For instance, big fluc-
From here it follows that the limits tuations, driving the system far from equilibrium, may arise
[33,34. Since statistical systems are a particular type of real
lim limo(a,t)=—oo, limlmo(a,t)=+» physical systems, they also have to be considered as quasi-
t—oa—0 a—0t—o isolated. The absence of absolute equilibrium for a statistical

) system implies that large nonequilibrium fluctuations of me-
do not commute with each other. Therefore such a system Soscopic scale spontaneously appear in the system, being

also stochastically unstable. randomly distributed in space and in tirfg5). If evolution
equations do possess an attractor, this has to be a chaotic
X. CONCLUSIONS attractor.

(iii ) Irreversibility of time arrow As far as completely
isolated systems do not exist, but there are only quasi-
isolated systems, the dynamics of such a system, because of

A convenient characteristic for analyzing the stability of
dynamical systems is thiecal stability index(5). This can

be expressed through the multiplier matht) as the action of random perturbations, can never be reversed so
. that to exactly return to a particular dynamical state. Since
a(t)=In[[M(D)]]. quasi-isolated systems are stochastically unstable, any trajec-

tory after sufficiently long time will deviate arbitrarily far
For deterministic(nonstochastic dynamical systems, there from the initial point. All that means the irreversibility of
exists another representation of the stability index throughime.
the Lyapunov or stability matrix R&t), whereJ(t) is the
Jacobian matrix associated with the considered system. The ACKNOWLEDGMENTS
name of the Lyapunov matrix comes from the fact that its

) This work was supported by research grants from {fe Sa
eigenvalues are the local Lyapunov exponents. Then the Stfa-faulo State Reseafc% Foun()j/ation Bragil and Bogolubov-
bility index, if condition (37) holds, can be written as '

Infeld International Program, Poland.

t ~
cr(t)=f [IReJ(t")||dt’. APPENDIX
0
Here several formulas, related to the Gaussian white

This presentation, however, is not valid for stochastic dyNoise, are presented, which have been repeatedly used
namical systems. For the latter, the stability index is to behroughout the paper. The stochastic variab(é), corre-

calculated by means of E¢45). The form(47) of the stabil- ~ SPonding to this noise, centered at zero, has the properties

ity index, (&DN=0, (&DEt))=2yst—t"),
a(a,t)=In[[{(M(ag,ON, ((&(t)é(tz) - - &(t2n4+1)))=0,

is a handy representation for studying the influence of weak ((€(ty) &(to) - - - E(ton)))

stochastic perturbations. The main physical conclusions re- (2n—1)1

sulting from the general approach and particular examples =(2y)" 2 S(ty—t,) S(ta—ty) - - -

are as follows.

(i) Nonexistence of isolated systerbe fact that no real
physical system can be completely isolated, but is always O(tan-1—1t2n),
subject to uncontrollable random perturbations, is more of ..o v
less generally accepté8—11. The point that the concept of _ (2n)1/2"n1 =1x3x5. - . (2n—1). As an example, a sym-
an isolated system is logically self-contradictory has alsometrizéd su.m of; for n=2 mean§12f34+f13f24+ f’14f23.

been emphasized®,12,13. What is principally important in . . . ; > ‘
the present paper is the demonstration that the isolated sy-_l,_-he integration of(t) over time gives the Wiener variable

tems are stochastically unstable with respect to infinitesi- t

mally weak random perturbations. A given physical system w(t)= Jo &(t')dt’.
can be considered as almost isolated, or quasi-isolated, dur-

ing a finite time interval, but it cannot be treated as suchFor the latter, one has

sym implies the symmetrized sum and (2 1)!!
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ty
[T —

(2n)!
n!

(w2 ())=0, (w(t)))= (yt)™

In general, any Gaussian variali{t) satisfies the equality

PHYSICAL REVIEW B5 056118

1
<<expG(t)>>:exp|5<<Gz(t)>>
For instance,

((explaw(t)}))=expayt).

These formulas are sufficient to understand all calculations,
related to the averaging over the white noise, which have
been made in the paper.
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