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Stochastic instability of quasi-isolated systems
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The stability of solutions to evolution equations with respect to small stochastic perturbations is considered.
The stability of a stochastic dynamical system is characterized by the local stability index. The limit of this
index with respect to infinite time describes the asymptotic stability of a stochastic dynamical system. Another
limit of the stability index is given by the vanishing intensity of stochastic perturbations. A dynamical system
is stochastically unstable when these two limits do not commute with each other. Several examples illustrate
the thesis that there always exist such stochastic perturbations that render a given dynamical system stochas-
tically unstable. The stochastic instability of quasi-isolated systems is responsible for the irreversibility of time
arrow.
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I. INTRODUCTION

Evolutional processes of nature are described by differ
tial equations that, in general, are equations in partial der
tives. A set of such partial differential equations constitu
an infinite-dimensionaldynamical system. Under aphysical
systemone implies an ensemble of objects whose behavio
of interest. The evolution of a given physical system is ch
acterized by the related dynamical system. Among phys
systems, one distinguishesisolated systemsas opposed to
open systems. The evolution of the isolated physical system
is governed by deterministic laws, that is, bydeterministic
equations, not containing random variables. While ope
physical systems, generally, deal withstochastic equations,
where random terms represent the interaction with the
roundings.

Solutions to differential equations can be either stable
unstable. There are methods for analyzing the stability
solutions for a given dynamical system, either determinis
@1–3# or stochastic@4#. Here we address another proble
that of stability of a deterministic dynamical system wi
respect to small stochastic perturbations. This problem is
only interesting by itself but it is of fundamental importan
with regard to the question: how adequately the notion
isolated systems represents the physical reality?

As is evident, the notion of an isolated system is an
straction. In fact, no real system can be completely isola
from its surroundings. This point has been repeatedly emp
sized in literature@5–9#, and the impossibility of ideally iso-
lating macroscopic systems from their environment is c
sidered as being intimately related with the irreversibility
time @10,11#. Moreover, it has been stressed@12,13# that the
concept of an isolated system is logically self-contradict
by its own. This is because to realize the isolation, one ha
employ technical devices acting on the system; and to en
that the latter is kept isolated, one must apply measu
instruments perturbing the system. The preparation and
istration processes disturb the system dynamics@14#. In this
way, there exists an accepted understanding that any co
ered physical system is never absolutely isolated but is s
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ject to, probably, weak but, generally, uncontrollable rand
influence from the environment. Even if this influence
quite weak, its very existence is of principal importance,
explaining the irreversibility of time arrow.

It is worth noting that the irreversible behavior of macr
scopic systems is often attributed to internal chaotic natur
microscopic dynamics~see discussion in Ref.@15#!. How-
ever, not all physical systems display chaotic behavior. Ma
of them are perfectly governed by rather simple determini
laws, with no signs of chaos. Nevertheless, the time arrow
well defined for any system, including very simple and no
chaotic ones. Furthermore, the recent developments in
namical theory, as reviewed by Zaslavsky@16#, show that the
chaotic dynamics in real systems does not provide finite
laxation time to equilibrium or fast decay of fluctuations, a
that chaotic systems are not completely random in the se
originally postulated for statistical systems. Therefore
presence of a random environment, though very weak, se
to be crucially important for interpreting fundamental n
tions in the behavior of real physical systems.

From another side, there is a common belief, based
practical experience, that physical systems can, with a v
good accuracy, be isolated and can be described by deter
istic equations, while the random influence of surroundin
may be neglected. Thus, there exists an apparent contra
tion between the principal necessity of allowing for rando
perturbations influencing any real system and the pract
possibility of neglecting such perturbations, treating a syst
as isolated.

This contradiction is resolved in the present paper by p
ting the problem on a firm mathematical footing. The co
cept of quasi-isolated systems is defined. It is shown t
such systems, generally, are unstable with respect to in
tesimally small stochastic perturbations. At the same tim
for a finite temporal period, these systems can be treate
approximately isolated.

II. STABILITY OF STOCHASTIC SYSTEMS

Let a continuous variablexPD denote a set of spatia
coordinates pertaining to a domainD and let tPR1 denote
©2002 The American Physical Society18-1
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V. I. YUKALOV PHYSICAL REVIEW E 65 056118
time. Suppose a stochastic fieldj(t) is defined. In general
the latter is a set of stochastic functionsj i(x,t), with i
51,2, . . . .Throughout the paper, we shall use the mat
notation @17# making it possible to express the followin
equations in a compact form. Thus, thestochastic fieldj(t)
5@j i(x,t)# is considered as a column with respect to bo
i 51,2, . . . , aswell as xPD. The dynamical state y(j,t)
5@yi(x,j,t)# is also a column with respect toi andx, as is
the velocity fieldv(y,j,t)5@v i(x,y,j,t)#. The set of evolu-
tion equations, defining a dynamical system, in the ma
notation reads

d

dt
y~j,t !5v~y,j,t !. ~1!

This is complimented by an initial condition

y~j,0!5y~0!, ~2!

implying the set

yi~x,j,0!5yi~x,0! ~ i 51,2, . . .!

of the related initial conditions. The averaging over the s
chastic fieldj(t) is denoted by the double angular bracke
as

y~ t !5Š^y~j,t !&‹, ~3!

which assumes the family of the functions

yi~x,t !5Š^yi~x,j,t !&‹, ~4!

with i 51,2, . . . .
In the stochastic equation~1!, the velocity fieldv(y,j,t)

may, in general, contain differential as well as integral o
erations. To solve Eq.~1! means to find the averaged solutio
~3!. Stochastic differential equations, as is known@18#, can
be defined either in the sense of Ito or in the sense of S
tonovich. In what follows, the latter definition will be em
ployed, which permits simpler calculations and is better m
tivated physically @19#. It is also possible to use th
stochastic expansion technique@20,21#, presenting the sto
chastic field as an expansion over smooth functions of sp
and temporal variables with random coefficients. T
method enables the usage of the standard differential
integration analysis. The final results of the expansion te
nique coincide with the corresponding expressions obtai
by means of the Stratonovich method.

The local stability of a dynamical system can be char
terized by thelocal stability index

s~ t ![ ln sup
dy~0!

udy~ t !u
udy~0!u

, ~5!

which describes the maximal deviation of the averaged
jectory at timet after an infinitesimal variation of the initia
conditions. Such a deviation, according to Eq.~5!, corre-
sponds to the law

udy~ t !u;udy~0!ues(t), ~6!
05611
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from where it is evident whys(t) is called the stability
index, or stability exponent. From this definition, one c
immediately conclude that the admissible local properties
motion are classified as

s~ t !,0 ~ locally stable!,

s~ t !50 ~ locally neutral!, ~7!

s~ t !.0 ~ locally unstable!.

The asymptotic Lyapunov stability corresponds to the ter
nology

lim
t→`

s~ t !52` ~Lyapunov stable!,

lim
t→`

s~ t !.2` ~Lyapunov unstable!. ~8!

And in the language of the Lagrange stability of motion, o
has

sup
t

s~ t !,` ~Lagrange stable!,

sup
t

s~ t !5` ~Lagrange unstable!. ~9!

The limit

l5 lim
t→`

1

t
s~ t ! ~10!

corresponds to the largest Lyapunov exponent. One tells
the motion is asymptotically stable ifl,0, neutral whenl
50, and unstable ifl.0.

The usage of a local characteristic of motion, such as
local stability index ~5!, provides us an essentially riche
information on temporal dynamics than the largest Lyapun
exponent~10! defined for the limitt→`. First of all, this is
because many dynamical systems possess a rather co
cated structure of their phase space resembling a topolog
zoo, consisting of domains of chaotic dynamics as well as
regions of regular motion, containing manifolds of wand
ing trajectories as well as trapping islands. As a result of t
the fine local properties of orbits play a leading role, wh
such a fairly rough characteristic as the limiting Lyapun
exponent is less important@16,22#.

Moreover, the asymptotic divergence of trajectories
stochastic dynamical systems is not compulsorily expon
tial @4#, because of which making use of only the limitin
Lyapunov exponent~10! may result in the loss of informa
tion. For example, the divergence of trajectories can be
power law

udy~ t !u;udy~0!utb.

Such power laws are typical for weakly disordered syste
@23# exhibiting mid-range order@24#. In that case, the loca
stability index~5! behaves ass(t);b ln t, which can be ei-
ther positive or negative depending on the sign ofb. Respec-
8-2
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tively, the motion is either stable or unstable. While, acco
ing to the Lyapunov exponent~10!, which is l50, the
motion is neutral. Another example has to do with the div
gence of trajectories by the stretched exponential law

udy~ t !u;udy~0!uexp~ktb!,

with 0,b,1, which is also quite ubiquitous in disordere
systems. Then the local stability index~5! is s(t);ktb,
which again can be either positive or negative depending
the sign ofk, hence, the motion is either stable or unstab
And the limit ~10! is again zero, classifying the motion a
neutral.

Instead of the asymptotic Lyapunov exponent~10!, one
could define the local Lyapunov exponent@25,26# as

l~ t !5
1

t
s~ t !.

However, for what follows, the usage of the local stabil
index ~5! is more convenient.

One more advantage of employing a local characteri
of stability is that the limit~10! for many complex systems i
technically unachievable. Then the local index~5! is the sole
available quantity that can be actually calculated. Suc
situation is typical for complicated nonlinear equations t
can be treated only numerically@27#, for the analysis of vari-
ous time series that are always finite@28#, and for the dy-
namical representation of perturbation theory, where it
practically feasible to calculate only a finite number of ter
@29–32#.

The local stability exponent~5! can be expressed throug
the multiplier matrixM̂ (t)5@Mi j (x,x8,t)# with the elements

Mi j ~x,x8,t ![
dyi~x,t !

dyj~x8,0!
. ~11!

From this definition, it follows that

Mi j ~x,x8,0!5d i j d~x2x8!, ~12!

whered i j is the Kroneker delta andd(x) is the Dirac delta
function. Writing the variation of the averaged dynamic st
as

dy~ t !5M̂ ~ t !dy~0!, ~13!

we see that

sup
dy~0!

uM̂ ~ t !dy~0!u
udy~0!u

5uuM̂ ~ t !uu, ~14!

with the spectral norm ofM̂ (t) being assumed. Therefore th
local stability exponent~5! is

s~ t !5 lnuuM̂ ~ t !uu. ~15!

Thus, to analyze the stability of motion, we need to know
multiplier matrix ~11!.
05611
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III. STOCHASTIC MULTIPLIER MATRIX

What we are actually given is the stochastic equation~1!
defining the stochastic dynamic statey(j,t), whose variation

dy~j,t !5M̂ ~j,t !dy~0! ~16!

over the initial conditions involves thestochastic multiplier

matrix M̂(j,t)5@Mi j (x,x8,j,t)# with the elements

Mi j ~x,x8,j,t ![
dyi~x,j,t !

dyj~x8,0!
. ~17!

For the latter, one has the initial condition

Mi j ~x,x8,j,0!5d i j d~x2x8!. ~18!

The multiplier matrix~17! is connected with thestochastic

Jacobian matrix Jˆ (j,t)5@Ji j (x,x8,j,t)# with the elements

Ji j ~x,x8,j,t ![
dv i~x,y,j,t !

dyj~x8,j,t !
. ~19!

The variational differentiation of Eq.~1! gives the equation

d

dt
M̂ ~j,t !5 Ĵ~j,t !M̂ ~j,t ! ~20!

for the multiplier matrix~17!. The initial condition for this
equation is Eq.~18!.

Since the evolution equation~1! represents a set of partia
differential equations, one has to define as well bound
conditions. The latter can be written in the general form

b~y,j,t !50 ~xP]D!, ~21!

where ]D is the boundary manifold of the domainD and
b(y,j,t)5@bi(x,y,j,t)# is a boundary vector. Defining th
boundary matrix Bˆ (j,t)5@Bi j (x,x8,j,t)# with the elements

Bi j ~x,x8,j,t ![
dbi~x,y,j,t !

dyj~x8,j,t !
~22!

and accomplishing the variation of Eq.~21!, we get the
boundary condition

B̂~j,t !M̂ ~j,t !50 ~xP]D! ~23!

for the multiplier matrix.
As an illustration, we may offer the often met form of th

boundary conditions

S 11z
]

]xD yi~x,j,t !5 f i~ t ! ~xP]D!,

where z is a parameter andf i(t) is a given function. The
variation of this condition results in the equation

S 11z
]

]xD Mi j ~x,x8,j,t !50 ~xP]D!,
8-3
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V. I. YUKALOV PHYSICAL REVIEW E 65 056118
demonstrating a particular case of the boundary condi
~23!.

For the multiplier and Jacobian matrices, one may emp
different representations. To this end, let a set$wn(t)% of the
columnswn(t)5@wni(x,t)# be given, forming an orthonor
malized complete basis,

wm
1~ t !wn~ t !5dmn , (

n
wn~ t !wn

1~ t !51̂,

where 1̂5@d i j d(x2x8)# is the unity matrix andn is a label-
ing multi-index. To pass from thex representation ton rep-
resentation, we define

Mmn~j,t ![wm
1~ t !M̂ ~j,t !wn~ t !,

Jmn~j,t ![wm
1~ t !Ĵ~j,t !wn~ t !. ~24!

Recall that the matrix notation@17# is used here, according t
which, for instance, the action of the multiplier matrix o
wn(t) is the column

M̂ ~j,t !wn~ t !5F(
j
E Mi j ~x,x8,j,t !wn j~x8,t !dx8G .

Equation~20! for the multiplier matrix in the new represen
tation reads

d

dt
Mmn~j,t !5(

k
FJmk~j,t !Mkn~j,t !

1Mmk~j,t !wk
1~ t !

dwn~ t !

dt

2wm
1~ t !

dwk~ t !

dt
Mkn~j,t !G , ~25!

where the relation

dwm
1~ t !

dt
wn~ t !1wm

1~ t !
dwn~ t !

dt
50,

following from the normalization condition, is used. An
from Eq. ~18!, we have the initial condition

Mmn~j,0!5dmn ~26!

for Eq. ~25!. The multiplier matrix enjoys several usefu
properties.

Proposition 1. If the dynamical statey(j,t) can be pre-
sented as an expansion

y~j,t !5(
n

cn~j,t !wn~ t !1 f ~ t !, ~27!

over a basis$wn(t)% and f (t)5@ f i(x,t)# is a column of func-
tions not depending on the initial statey(0), then the multi-
plier matrix has the form
05611
n

y
M̂ ~j,t !5(

n
mn~j,t !wn~ t !wn

1~0!, ~28!

in which

mn~j,t ![
dcn~j,t !

dcn~j,0!
. ~29!

Proof. The variation of the expansion~27! gives

dyi~x,j,t !

dyj~x8,0!
5(

n

dcn~j,t !

dcn~j,0!

dcn~j,0!

dyj~x8,0!
wni~x,t !.

At the same time, from Eq.~27! we have

cn~j,t !5wn
1~ t !y~j,t !2wn

1~ t ! f ~ t !.

From the latter equation, we get

dcn~j,0!

dyj~x8,0!
5wn j* ~x8,0!.

Using this and invoking the definition~17!, we obtain the
form ~28! with notation~29!.

Remarks. Although the basis$wn(t)% is assumed to be
orthonormalized, but the vectorswm(t1) andwn(t2) at differ-
ent timest1Þt2 are not necessarily orthogonal, so that,
general,

wm
1~0!wn~ t !Þdmn .

Neitherwn(t) nor wn(0) are necessarily the eigenvectors
the multiplier matrix, for which we have

M̂ ~j,t !wn~0!5mn~j,t !wn~ t !.

Only whenwn(t)5wn does not depend on time, thenwn is
an eigenvector ofM̂ (j,t) andmn(j,t) is its eigenvalue.

Proposition 2. Suppose the multiplier matrixM̂ (j,t) pos-
sesses eigenvectorswn(t) forming a complete orthonormal
ized basis. Then the related eigenvalues, given by the ei
problem

M̂ ~j,t !wn~ t !5mn~j,t !wn~ t !, ~30!

can be presented as

mn~j,t !5expH E
0

t

Jnn~j,t8!dt8J . ~31!

Proof. With wn(t) being the eigenvectors of the multiplie
matrix, the elements of the latter, defined in Eq.~24!, are

Mmn~j,t !5dmnmn~j,t !. ~32!

Substituting this into Eq.~25! yields
8-4
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dmn

d

dt
mn~j,t !5Jmn~j,t !mn~j,t !1@mm~j,t !

2mn~j,t !#wm
1~ t !

dwn~ t !

dt
. ~33!

Whenm5n, the latter equation gives

d

dt
mn~j,t !5Jnn~j,t !mn~j,t !, ~34!

while for mÞn, it results in

Jmn~j,t !5F12
mm~j,t !

mn~j,t ! Gwm
1~ t !

dwn~ t !

dt
.

Solving Eq.~34!, with the initial condition

mn~j,0!51, ~35!

we come to the eigenvalue~31!.
Remarks. From the eigenproblem~30!, one gets the rep

resentation

M̂ ~j,t !5(
n

mn~j,t !wn~ t !wn
1~ t ! ~36!

for the multiplier matrix. The eigenvectors of the latter a
not necessarily the eigenvectors of the Jacobian matrix~19!.
Hence the formJmn(j,t), defined in Eq.~24!, is, in general,
nondiagonal.

Proposition 3. Assume that a complete orthonormaliz
basis$wn(t)% is such that

wm
1~ t !

dwn~ t !

dt
50 ~mÞn!. ~37!

Then wn(t) are the eigenvectors of the multiplier matr
M̂ (j,t) if and only if they are also the eigenvectors of t
Jacobian matrixĴ(j,t).

Proof. Let condition~37! hold. Then Eq.~25! becomes

d

dt
Mmn~j,t !5(

k
Jmk~j,t !Mkn~j,t !1Mmn~j,t !

3Fwn
1~ t !

dwn~ t !

dt
2wm

1~ t !
dwm~ t !

dt G . ~38!

If wn(t) are the eigenvectors ofM̂ (j,t), that is, the form~32!
takes place, then Eq.~38! reduces to

dmn

d

dt
mn~j,t !5Jmn~j,t !mn~j,t !,

from where it is clear that

Jmn~j,t !5dmnJnn~j,t !. ~39!

Hence,wn(t) are the eigenvectors ofĴ(j,t).
05611
Conversely, ifwn(t) are the eigenvectors ofĴ(j,t), so
that Eq.~39! holds true, then solving Eq.~38! yields

Mmn~j,t !5Mmn~j,0!expH E
0

tFJmm~j,t8!1wn
1~ t8!

dwn~ t8!

dt8

2wm
1~ t8!

dwm~ t8!

dt8
Gdt8J .

In view of the initial condition~26!, this results in

Mmn~j,t !5dmn expH E
0

t

Jnn~j,t8!dt8J , ~40!

which tells us thatwn(t) are the eigenvectors ofM̂ (j,t).
Remarks. As follows from Eq.~40!, the eigenvalues of the

multiplier matrix are given by expression~31!. A simple ex-
ample, when condition~37! is valid, is the case of a station
ary basis$wn%, with wn(t)5wn not depending on time.

Comparing Eqs.~3!, ~13!, and~16!, we see that

M̂ ~ t !5Š^M̂ ~j,t !&‹. ~41!

Therefore, ifM̂ (j,t) possesses eigenvectorswn(t), then the
matrix ~41! satisfies the eigenproblem

M̂ ~ t !wn~ t !5mn~ t !wn~ t ! ~42!

with the same eigenvectors and the eigenvalues

mn~ t !5Š^mn~j,t !&‹, ~43!

which have the property

mn~0!51. ~44!

With the spectral norm

uuM̂ ~ t !uu5supnumn~ t !u,

the local stability exponent~15! becomes

s~ t !5 ln supnuŠ^mn~j,t !&‹u. ~45!

In this way, the problem of analyzing the stability of a st
chastic dynamical system is connected with finding the
genvalues of the stochastic multiplier matrix.

IV. CONCEPT OF QUASI-ISOLATED SYSTEMS

As is discussed in the Introduction, no real physical s
tem can be completely isolated from its surrounding. T
latter can be modeled by stochastic perturbations of the
tem dynamics. To stress that the amplitude of the stocha
perturbation is small, it is convenient to include explicitly
small factora in front of the stochastic fieldj(t). So, instead
of Eq. ~1!, we shall write

dy

dt
5v~y,aj,t !. ~46!
8-5
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The factora5a11 ia2 is assumed to be complex, with it
real parta1[Rea and imaginary parta2[Im a. The com-
plex value of the factora makes it possible to simulate ran
dom fluctuations of different physical quantities, such as
ergy and attenuation or density and phase. Ifa[0, there are
no stochastic perturbations, and one returns to a determin
dynamical system. When stochastic fields are switched on
means ofa[” 0, we have a stochastic dynamical syste
whose local stability is characterized by the stability exp
nent ~45! that takes the form

s~a,t ![ ln supnuŠ^mn~aj,t !&‹u, ~47!

where the dependence on the switching factora is explicitly
shown.

The stability exponent~47! describes the stability of a
stochastic dynamical system with respect to the infinitesi
variation of initial conditions. For correctly defining the no
tion of a quasi-isolated system, it is also necessary to c
sider the stability with respect to infinitesimal stochastic p
turbations. This implies that,after analyzing the stability of
the stochastic system by means of the stability expon
~47!, we should seta→0. Sincea is complex valued, the
limit a→0 means that both its real and imaginary parts te
to zero:a1→0 anda2→0. Among all admissible ways o
tending to zero fora→0, it is necessary to choose that o
providing the maximal value for the exponent~47!, in agree-
ment with its definition as characterizing thelargest devia-
tion of the trajectory. The so defined limita→0 will be
denoted as

lim
a→0

s~a,t ![supa lim
uau→0

s~a,t !. ~48!

In the stability analysis with the help of the stability exp
nent ~47!, an important part is the consideration of th
asymptotic stability, whent→`. This limit may, in general,
not commute with the limita→0. Therefore, an importan
step is to study the commutativity of these limits, charac
ized by the commutator

@ lim
a→0

, lim
t→`

#[ lim
a→0

lim
t→`

2 lim
t→`

lim
a→0

.

The content of this section can be summarized by formu
ing the following definitions.

Definition 1. A physical system is calledquasi-isolatedif
its evolution is described by the stochastic dynamical sys
~46! with infinitesimally small stochastic perturbations.

Definition 2. A quasi-isolated system isstochastically
stablewhen

@ lim
a→0

, lim
t→`

#s~a,t !50. ~49!

Definition 3. A quasi-isolated system isstochastically un-
stableif

@ lim
a→0

, lim
t→`

#s~a,t !Þ0. ~50!
05611
-

tic
by
,
-

al

n-
-

nt

d

r-

t-

m

Note that the inclusion of stochastic fields in the evoluti
equations can be realized in different ways. Hence, in p
ciple, one could consider the stochastic stability with resp
to each of the particular ways. A quasi-isolated system m
turn out to be stochastically stable with respect to some
perturbations but unstable with respect to others. Howe
the kind of action of random environment on a quasi-isola
system is, by assumption, unpredictable. Therefore, it is
sufficient to limit ourselves by only some ways of includin
stochastic perturbations, which would result in the analy
of partial stochastic stability. But, in order to make a concl
sion on thegeneral stochastic stability of a quasi-isolate
system, one must analyze all qualitatively different adm
sible ways of including stochastic terms in the evoluti
equations. Fortunately, there are just two main qualitativ
different types of random noise, multiplicative and additiv

In the following sections, the preceding ideas will be
lustrated by concrete examples. Since the perturbing in
ence of the surroundings may be caused by many inde
dent random sources, their action, according to the cen
limit theorem, can be modeled by the Gaussian white no
@18#. For the convenience of the reader, the basic proper
of this noise, which will be repeatedly used throughout t
paper, are listed in short in the Appendix.

V. IMPORTANCE OF MULTIPLICATIVE NOISE

One may notice that additive noise cannot lead to stoch
tic instability. Really, let the velocity field in Eq.~1! be a sum
v(y,j,t)5v1(y,t)1v2(j,t) of two terms, the first of which
does not depend on the stochastic fieldj(t), while the sec-
ond does not include the dynamic statey. Then the Jacobian
matrix ~19! is defined only through the variation ofv1 and
does not depend onv2. Therefore the solution of Eq.~20! for
the multiplier matrix also is independent fromv2, which
means thatv2 does not influence the properties of the mu
tiplier matrix, hence, does not change the type of stabilit

But the multiplicative noise can strongly influence the s
bility property. To illustrate this, let us consider the evolutio
equation~46! with the velocity field

v~y,aj,t !5 f ~ t !1aj~ t !y~aj,t !,

where f (t) is a given function andj(t) is a Gaussian white-
noise variable with the properties described in the Append
Equation~46!,

dy

dt
5 f ~ t !1aj~ t !y, ~51!

determines the evolution of a one-dimensional dynam
system. In this case, the Jacobian matrix~19! reduces to the
function

J~aj,t !5aj~ t !.

According to Eq.~31!, this gives the multiplier

m~aj,t !5expH aE
0

t

j~ t8!dt8J . ~52!
8-6
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The same form~52! could be obtained from the direct varia
tion of the solution

y~aj,t !5y~0!expH aE
0

t

j~ t8!dt8J
1E

0

t

f ~ t8!expH aE
t8

t

j~ t9!dt9J dt8.

For the stability index~47!, we find

s~a,t !5~a1
22a2

2!gt, ~53!

wherea1[Rea anda2[Im a. Keeping in mind the defini-
tion ~48!, according to which the stability index is to b
maximized with respect toa1 anda2, under the given modu
lus uau25a1

21a2
2, we see that supa(a1

22a2
2) equals uau2

5a1
2. Therefore the index~53! can be written as

s~a,t !5uau2gt. ~54!

From here it follows that the limits

lim
t→`

lim
a→0

s~a,t !50, lim
a→0

lim
t→`

s~a,t !5` ~55!

do not commute with each other. This implies that the qua
isolated system, whose evolution is given by Eq.~51!, is
stochastically unstable.

VI. OSCILLATOR IN STOCHASTIC BACKGROUND

Many physical processes are presented by oscillatory
tion. It is, therefore, illustrative to consider a quasi-isolat
system described by a harmonic oscillator subject to the
tion of a weak external noise. Let the evolution equation~46!
have the form

dy

dt
5 ivy1aj~ t !y, ~56!

where the oscillator frequencyv is real. Here the real part o
a corresponds to the noisy attenuation-generation pro
and the imaginary part ofa described the noise of frequenc

For this one-dimensional case, the Jacobian matrix~19! is
the function

J~aj,t !5 iv1a j~ t !.

In view of Eq. ~31!, the multiplier is

m~aj,t !5expH ivt1aE
0

t

j~ t8!dt8J . ~57!

The same expression~57! also follows from the variation of
the solution

y~aj,t !5y~0!expH ivt1aE
0

t

j~ t8!dt8J .

The stability index~47! is
05611
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s~a,t !5~a1
22a2

2!gt, ~58!

where the properties of the white noise from the Appen
are used.

If the influence of the random noise is removed before
temporal limit, that is,a→0, then, for any choice ofa1 and
a2, we have

lim
t→`

lim
a→0

s~a,t !50, ~59!

which corresponds to the neutral motion. However, the s
ation is different if the limitt→` is taken first. Then, maxi-
mizing the factor~58!, in agreement with definition~48!, as
is explained in the preceding section, we get the form~54!.
As a result,

lim
a→0

lim
t→`

s~a,t !5`. ~60!

The noncommutativity of the limits~59! and~60! shows that
the oscillatory motion is stochastically unstable.

This means that for a finite time, such thatuau2gt!1, the
system with an oscillatory evolution can approximately
treated as isolated. But there always exists such a weak
dom noise that makes the system unstable for sufficie
long times.

VII. STOCHASTIC DIFFUSION EQUATION

Consider the diffusion equation

]y

]t
5@D1aj~ t !#

]2y

]x2
, ~61!

in which the diffusion constantD.0 is subject to weak ran
dom fluctuations. For any given finite interval, the spat
variablex can always be scaled so that to be defined on
unity interval. Thus, we assume thatxP@0,1#. Equation~61!
is complimented by the initial condition

y~x,aj,0!5y~x,0!, ~62!

with a given functiony(x,0), and by the boundary condition

y~0,aj,t !5b0 , y~1,aj,t !5b1 , ~63!

whereb0 andb1 are constant.
For Eq.~61!, the Jacobian matrix~19! is

J~x,x8,aj!5@D1aj~ t !#
]2

]x2
d~x2x8!. ~64!

The boundary conditions~63! lead, according to Eqs.~22!
and ~23!, to the boundary conditions

M ~0,x8,aj,t !5M ~1,x8,aj,t !50 ~65!

for the multiplier matrix.
Solving the eigenproblem
8-7
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E
0

1

J~x,x8,aj!wn~x8!dx85Jn~aj!wn~x! ~66!

for the Jacobian matrix~64!, with the boundary conditions

wn~0!5wn~1!50, ~67!

we find the eigenvalues

Jn~aj!52@D1aj~ t !#kn
2 ~68!

and the eigenfunctions

wn~x!5A2sinknx, ~69!

where

kn[pn ~n51,2, . . . ,N→`!. ~70!

The eigenvectorswn5@wn(x)#, being the columns with the
elements~69!, are stationary. Hence, they satisfy conditi
~37!. Then, by Theorem 3, the multiplier matrix possess
the same eigenvectorswn , with the eigenvalues~31!, where
Jnn5Jn . Taking account of Eq.~68! yields

mn~aj,t !5expH 2Dkn
2t2akn

2E
0

t

j~ t8!dt8J . ~71!

Note that the solution to Eq.~61! reads

y~x,aj,t !5 (
n51

`

cnmn~aj,t !wn~x!1 f ~x!,

where

cn5E
0

1

@y~x,0!2 f ~x!#wn~x!dx, f ~x!5b01~b12b0!x.

The form of this solution is that of the expansion~27! in
Theorem 1, because of which the multiplier matrix could
found by means of this theorem.

Averaging Eq.~71! over the stochastic field~see Appen-
dix!, we get

uŠ^mn~aj,t !&‹u5exp~2Dkn
2t1a2kn

4gt !, ~72!

wherea is real. Hence, the stability index~47! becomes

s~a,t !5supn~2Dkn
2t1a2kn

4gt !. ~73!

Taking into consideration Eq.~70!, this gives

s~a,t !5H 2Dp2t ~a50!,

a2~pN!4gt ~aÞ0!,

with N→`.
In this way, we have

lim
t→`

lim
a→0

s~a,t !52`, ~74!
05611
s

e

which means that in the absence of any stochastic pertu
tions the motion would be stable. However, if infinitesima
small stochastic perturbations are present, then

lim
a→0

lim
t→`

s~a,t !5`, ~75!

and the motion is stochastically unstable. This case serve
a good example of how even very weak perturbations
render the system to become unstable, even if without th
perturbations it was perfectly stable.

VIII. STOCHASTIC SCHRÖ DINGER EQUATION

Consider the nonstationary Schro¨dinger equation

]c

]t
5@2 iH ~r !1a f ~r ,t !j~ t !#c, ~76!

in which we set\[1, c5c(r ,aj,t) is a wave function,
H(r ) is a Hamiltonian,a is real, f (r ,t) is a given real func-
tion, andj(t) is the white noise. With the velocity field de
fined by the right-hand side of Eq.~76!, the Jacobian matrix
~19! becomes

J~r ,r 8,aj,t !5@2 iH ~r !1a f ~r ,t !j~ t !#d~r2r 8!. ~77!

The eigenproblem for the matrixĴ(aj,t), whose elements
are given by Eq.~77!, reads

Ĵ~aj,t !cn5Jn~aj,t !cn . ~78!

Keeping in mind thata is small, the eigenproblem~78! can
be solved by means of perturbation theory. In the zero
proximation, the eigenvectorcn5@cn(r )# is a column with
respect to the spatial variabler , with cn(r ) given by the
stationary Schro¨dinger equation

H~r !cn~r !5Encn~r !,

so that the zero-order eigenvalue of the Jacobian matrix

Jn
(0)~aj,t !52 iEn .

The first-order approximation for the eigenvalue of the Ja
bian matrix is given by

Jn~aj,t !5cn
1Ĵ~aj,t !cn , ~79!

which yields

Jn~aj,t !52 iEn1a f n~ t !j~ t !, ~80!

where

f n~ t ![E cn* ~r ! f ~r ,t !cn~r !dr .

Note that if f (r ,t)5 f (t) does not depend on the spatial va
abler , then the form~80! with f n(t)5 f (t) is an exact eigen-
value of the matrixĴ(aj,t). The multi-indexn, labeling the
eigenvalues, can be discrete as well as continuous.
8-8



,
m

at

n

o

e
i-
e

tio
as
fa

-

ix
b
ld

m

dex

ba-

ble.
on-
any
as-
sts,
ch
ular
hat,
en

no
ise,

rge

i-
not

ul-

STOCHASTIC INSTABILITY OF QUASI-ISOLATED SYSTEMS PHYSICAL REVIEW E65 056118
For the stationary eigenvectorscn of the Jacobian matrix
the multiplier matrix, by Theorem 3, possesses the sa
eigenvectors and its eigenvalues are

mn~aj,t !5expH 2 iEnt1aE
0

t

f n~ t8!j~ t8!dt8J . ~81!

From here, the stability index~47! is

s~a,t !5a2gE
0

t

f n
2~ t8!dt8. ~82!

The functionf (r ,t) in Eq. ~76! can always be chosen so th
to satisfy the inequality

lim
t→`

1

t E0

t

f n
2~ t8!dt8.0. ~83!

Switching off stochastic fields results in the neutral motio
for which

lim
t→`

lim
a→0

s~a,t !50. ~84!

But for infinitesimally weak stochastic perturbations, the m
tion becomes unstable, with

lim
a→0

lim
t→`

s~a,t !5`, ~85!

where condition~83! is taken into account. In this way, th
system described by the Schro¨dinger equation is stochast
cally unstable, although for some temporal interval, wh
s(a,t)!1, it can be treated as almost isolated.

IX. SKETCH OF GENERAL SITUATION

In the general case, the stochastic fieldj(t)5@j i(x,t)# is
a column composed of the elementsj i(x,t) depending on
space as well as on time. This field has to enter the evolu
equations as a multiplicative noise. To consider a qu
isolated system, the stochastic term is included with the
tor a, which is assumed to be infinitesimally small. Fora
!1, the Jacobian matrix~19! can be calculated by perturba
tion theory, which yields an expression of the form

Ĵ~aj,t !. Ĵ~0,t !1a Ĵ8~j,t !.

In the representation of a basis$wn(t)% of vectors wn(t)
5@wni(x,t)#, this reads

Jmn~aj,t !.Jmn~0,t !1a(
i
E Amn

i ~x,t !j i~x,t !dx.

~86!

If wn(t) are the eigenvectors of the multiplier matr
M̂ (aj,t), then its eigenvalues, by Theorem 2, are given
Eq. ~31!. Averaging these eigenvalues over stochastic fie
implied to be Gaussian, gives
05611
e
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Š^mn~aj,t !&‹5mn~0,t !expH a2

2
kn~ t !J , ~87!

where the factor

mn~0,t !5expH E
0

t

Jnn~0,t8!dt8J
is the multiplier of an isolated system, without any rando
perturbations, and

kn~ t !5(
i j

E dx1 dx2E
0

t

Ann
i ~x1 ,t1!Ann

j ~x2 ,t2!

3Š^j i~x1 ,t1!j j~x2 ,t2!&‹dt1 dt2

is caused by stochastic perturbations. Then the stability in
~47! is

s~a,t !5supn ReF E
0

t

Jnn~0,t8!dt81
a2

2
kn~ t !G , ~88!

wherea is real.
Whena→0, the stability index

s~0,t !5supn ReE
0

t

Jnn~0,t8!dt8 ~89!

is defined by the properties of the system without pertur
tions. The limitsa→0 andt→` do not commute if

lim
t→`

Usupn Rekn~ t !

s~0,t ! U5`. ~90!

Then the quasi-isolated system is stochastically unsta
This condition is accomplished for the concrete cases c
sidered above. It is, of course, impossible to prove that
given quasi-isolated system is, with probability one, stoch
tically unstable. However, the above consideration sugge
with a high level of probability, that there always exists su
a noise that renders stochastically unstable any partic
system. This thesis is certainly correct for those systems t
in the absence of noise, display neutral motion. Th
ReJnn(0,t)50, hences(0,t)50, and condition~90! is ob-
viously valid. As is shown in Sec. VII, condition~90! can be
held true even for systems that are stable when there is
noise. Let us also emphasize that if, instead of white no
we would consider infrared noise, then condition~90! would
necessarily hold. Really, for a deterministic system at la
time, one usually hass(0,t);t, while for infrared noise
kn(t);t2. This makes condition~90! evidently valid.

Finally, it is important to note that for stochastic dynam
cal systems the divergence of averaged trajectories is
necessarily exponential but may be of algebraic form@4#,
which implies that the norm of the averaged stochastic m
tiplier matrix has the power-law behavior

uuŠ^M̂ ~aj,t !&‹uu5aAS t

tc
D b

~b.0!,
8-9
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whereA is a constant andtc is thechaotization timedefining
the crossover between stable and chaotic motion. Fot
!tc , the motion is stable, while fort@tc , it becomes cha-
otic. The arising instability corresponds toweak chaossince
the effective trajectory divergence is only algebraic but
exponential. In this case, the local stability index~47! is

s~a,t !5 lnUaAS t

tc
D bU.

From here it follows that the limits

lim
t→`

lim
a→0

s~a,t !52`, lim
a→0

lim
t→`

s~a,t !51`

do not commute with each other. Therefore such a syste
also stochastically unstable.

X. CONCLUSIONS

A convenient characteristic for analyzing the stability
dynamical systems is thelocal stability index~5!. This can
be expressed through the multiplier matrixM̂ (t) as

s~ t !5 lnuuM̂ ~ t !uu.

For deterministic~nonstochastic! dynamical systems, ther
exists another representation of the stability index throu
the Lyapunov or stability matrix ReĴ(t), whereĴ(t) is the
Jacobian matrix associated with the considered system.
name of the Lyapunov matrix comes from the fact that
eigenvalues are the local Lyapunov exponents. Then the
bility index, if condition ~37! holds, can be written as

s~ t !5E
0

t

uuReĴ~ t8!uudt8.

This presentation, however, is not valid for stochastic
namical systems. For the latter, the stability index is to
calculated by means of Eq.~45!. The form~47! of the stabil-
ity index,

s~a,t !5 lnuuŠ^M̂ ~aj,t !&‹uu,

is a handy representation for studying the influence of w
stochastic perturbations. The main physical conclusions
sulting from the general approach and particular examp
are as follows.

~i! Nonexistence of isolated systems. The fact that no rea
physical system can be completely isolated, but is alw
subject to uncontrollable random perturbations, is more
less generally accepted@5–11#. The point that the concept o
an isolated system is logically self-contradictory has a
been emphasized@9,12,13#. What is principally important in
the present paper is the demonstration that the isolated
tems are stochastically unstable with respect to infinite
mally weak random perturbations. A given physical syst
can be considered as almost isolated, or quasi-isolated,
ing a finite time interval, but it cannot be treated as su
05611
t

is

h

he
s
ta-

-
e

k
e-
s

s
r

o

ys-
i-

ur-
h

forever. Sooner or later, a quasi-isolated system looses
stability. There are no eternally stable systems in nature.

~ii ! Absence of absolute equilibrium. In the theory of dy-
namical systems, solutions are termed equilibrium if they
either constant in time or periodic or quasiperiodic. Ho
ever, for a quasi-isolated system, none of these solutions
be absolutely stable for an infinitely long time. On a fini
temporal interval, a solution can correspond to a stable e
librium, but with increasing time, some kind of nonequilib
rium behavior will certainly appear. For instance, big flu
tuations, driving the system far from equilibrium, may ari
@33,34#. Since statistical systems are a particular type of r
physical systems, they also have to be considered as q
isolated. The absence of absolute equilibrium for a statist
system implies that large nonequilibrium fluctuations of m
soscopic scale spontaneously appear in the system, b
randomly distributed in space and in time@35#. If evolution
equations do possess an attractor, this has to be a ch
attractor.

~iii ! Irreversibility of time arrow. As far as completely
isolated systems do not exist, but there are only qu
isolated systems, the dynamics of such a system, becau
the action of random perturbations, can never be reverse
that to exactly return to a particular dynamical state. Sin
quasi-isolated systems are stochastically unstable, any tra
tory after sufficiently long time will deviate arbitrarily fa
from the initial point. All that means the irreversibility o
time.
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APPENDIX

Here several formulas, related to the Gaussian wh
noise, are presented, which have been repeatedly
throughout the paper. The stochastic variablej(t), corre-
sponding to this noise, centered at zero, has the propert

Š^j~ t !&‹50, Š^j~ t !j~ t8!&‹52gd~ t2t8!,

Š^j~ t1!j~ t2!•••j~ t2n11!&‹50,

Š^j~ t1!j~ t2!•••j~ t2n!&‹

5~2g!n (
sym

(2n21)!!

d~ t12t2!d~ t32t4!•••

d~ t2n212t2n!,

where (sym implies the symmetrized sum and (2n21)!!
5(2n)!/2nn! 513335•••(2n21). As an example, a sym
metrized sum off i j for n52 meansf 12f 341 f 13f 241 f 14f 23.
The integration ofj(t) over time gives the Wiener variable

w~ t ![E
0

t

j~ t8!dt8.

For the latter, one has
8-10
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K K E
t1

t2
w~ t !dw~ t !L L 5g~ t22t1!,

Š^w2n11~ t !&‹50, Š^w2n~ t !&‹5
~2n!!

n!
~gt !n.

In general, any Gaussian variableG(t) satisfies the equality
e-

-

05611
Š^expG~ t !&‹5expH 1

2
Š^G2~ t !&‹J .

For instance,

Š^exp$aw~ t !%&‹5exp~a2gt !.

These formulas are sufficient to understand all calculatio
related to the averaging over the white noise, which ha
been made in the paper.
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